The Wisconsin PASS Project

Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, Ben Liblit, Miron Livny, Michael Swift

University of Wisconsin, Madison

Storage System Reliability

Goals

Study: How disks fail

- Latent sector errors [Sigmetrics 07]
- Corruption [FAST 08]

Study: How & why systems fail

- Model checking [FAST 08]
- Pointer corruption [DSN 08]
- Error propagation [FAST 08]

Develop: New ways to cope with failure

- I/O Shepherding [SOSP 07]
- Declarative FS Checking [OSDI 08]

Storage Design Model Checking

The Problem

RAID protection schemes are complex

- Identity info (logical, physical)
- Block, sector, parental checksums
- Disk scrubbing
- Write verify

Systems use different combos of above

Systems from NetApp, Dell, Hitachi, etc.

What does a given scheme protect?

Model Checking

Automatic checking

 Use search to see how designs react to different types of failure

Example faults

- Lost writes
- Torn writes
- Corruption

Output:

 "Proof" of design correctness or example of hole in scheme

Example: Block checksums + Scrubbing

Results [details in FAST '08]

Analyzed eight real designs

From industry and literature

Found design flaws in all eight

- Wrong sequence of faults leads to data loss or unavailability
- General problem: Parity Pollution

New technique: Version mirroring

Overcomes pollution thru additional state

Error Propagation

The Problem

Problem: Lost Errors

- Low-level generates error (EIO)
- Somewhere before it gets reported, file system loses the error

Causes many problems

- Can't tell if operation worked
- File system itself can't detect/recover

How to find where these occur?

The Approach: EDP

Static source code analysis

 Look through source code for places where error codes are lost

Built in CIL framework (from UCB)

- Error generation: Return value or arg
- Constructs channels:
 Flow of errors back through call graph
- Label channel complete or broken

Example

```
int sync blockdev (block device *) {
    int ret = 0, err;
    ret = filemap fdatawrite();
   err = filemap fdatawait();
   <u>if (!ret)</u> {
      ret = err;
      return ret;
int journal recover (journal *) {
    int err;
   sync blockdev(); // ERROR IGNORED!
   return err;
```

ext3

reiserfs

IBM JFS

NFS Client

SGI XFS

Summary [details in FAST '08]

Static Analysis

- Show how basic error codes flow
- Currently: 34 basic error codes

Target systems

- 51 Linux file systems
- 3 storage drivers

Results

- Roughly 10k function calls
- More than 10% of calls are problematic

Declarative File System Checking

The Problem

Too much C code

 As long as we build systems this way, they will always have bugs

Different approach: Higher-level

Fewer lines of code to describe system

Target domain: File system checking

 Important and complex code (tens of thousands of lines of C code)

Our Approach: SQCK

SQCK ("squeak" for SQL-based FSCK)

- Load file system metadata into tables
- Run SQL queries over metadata, perhaps fixing problems
- Store metadata back into file system

Lots of challenges

- Simplicity
- Performance
- Flexibility

Example Query

Check for out-of-range indirect block

Results [details in OSDI '08]

Simplicity

- Roughly 1k lines of SQL to implement most of e2fsck
- Ordering of checks/repairs an issue

Performance

Comparable to e2fsck (usually)

Flexibility

 Can change policies more easily (it's declarative!)

Impact

Publications

Open-source

- Found hundreds of bugs in ext, Reiser, XFS, and other file systems
- Many now fixed (some during presentation!)
- Some design influence on next-gen FS's

Industrial

 Led to re-design of storage protection scheme in RAIDs

People

Current students

- Lakshmi Bairavasundaram (Ph.D. --> NetApp)
- Haryadi Gunawi (Ph.D.)
- Cindy Rubio (Ph.D.)
- Abhishek Rajimwale (Ph.D., maybe)
- Andrew Krioukov (Undergraduate --> Berkeley)
- Nitin Agarwal (Ph.D.)

Former students

 Meenali Rungta (Google), Shweta Krishnan (Cisco), Arini Balakrishnan (Sun)

Collaboration with many@NetApp, Schroeder@Toronto

Conclude

Conclusions

Analysis of disk failures

- Good first steps
- New devices on horizon

Analysis of systems

- Everywhere we look there are problems
- Starting to understand how to measure reliability (model checking, static analysis)
- Still hard to do this in a general way

Building reliability in by design

Just the beginning (SQCK)

Want to read more? www.cs.wisc.edu/adsl

Thanks to our sponsors:

